NCI Deputy Director’s Report

Douglas R. Lowy, M.D.

1st Virtual Joint Meeting of NCI Board of Scientific Advisors & National Cancer Advisory Board

April 9, 2020
Frederick National Laboratory for Cancer Research

• The only Federally-Funded Research and Development Center (FFRDC) dedicated exclusively to biomedical research

Operated in the public interest by Leidos Biomedical Research, Inc. on behalf of the National Cancer Institute

Mission

Provide a unique national resource for the development of new technologies and the translation of basic science discoveries into novel agents for the prevention, diagnosis and treatment of cancer and AIDS.
The Frederick National Lab is dedicated to improving human health through discovery and innovation in the biomedical sciences, focusing on cancer, AIDS, and emerging infectious diseases.

- Basic, translational, and clinical science
- Cancer, HIV/AIDS, and cancer viruses
- Biopharmaceutical development
- Drug discovery
- Animal models and biomedical imaging
- Nanotechnology characterization and formulations
- Data sciences
- Reagent validation and characterization
- Optical & Electron microscopy, Cryo-EM
NCI and NIAID are the major users of FNLCR

- **NIAID has made extensive use of FNLCR in responding rapidly to other epidemics:** Examples include SARS (2003), Ebola (2013), Zika (2015)

- **One example from current SARS-CoV-2 epidemic:** Developing a global therapeutic trial of **Remdesivir** in COVID-19 patients
 - A nucleoside analog, functions as an RNA chain terminator
 - Originally developed for treatment of Ebola and Marburg virus infections
 - Subsequently found to inhibit replication of other RNA viruses, including coronaviruses
Pivoting some cancer research activities at FNLCR to SARS-CoV-2 research

• Identifying genetic determinants of SARS-CoV-2 susceptibility and outcomes: Cancer Genomics Research Laboratory

• Testing and validating serologic assays for SARS-CoV-2: Serology laboratory of Vaccine, Immunity, and Cancer Program

• High throughput screening for small molecule inhibitors of SARS-CoV-2 proteins: Technology developed by RAS Initiative
Pivoting some cancer research activities at FNLCR to SARS-CoV-2 research

• Identifying genetic determinants of SARS-CoV-2 susceptibility and outcomes: Cancer Genomics Research Laboratory

• Testing and validating serologic assays for SARS-CoV-2: Serology laboratory of Vaccine, Immunity, and Cancer Program

• High throughput screening for small molecule inhibitors of SARS-CoV-2 proteins: Technology developed by RAS Initiative
Genetic Determinants of Susceptibility and Outcomes of COVID-19

GOALS

1. Rapidly identify variants
 • Targets for therapy
 • Insights into biology of COVID-19 pathogenesis
 • Use for screening/public health
 • Sets of SNPs or mutations

2. Immediately share data with community
 • Cloud-based availability with dbGap ‘front-door’
 • NCI/NIAID/NHGRI working together
 • Verily/Terra (Broad) and others
HIV: Genetic polymorphisms of CCR5 receptor can increase or decrease risk of infection and rate of disease progression

Fig. 1 CCR5 is a key co-receptor for HIV entry. CCR5Δ32 individuals in whom CCR5 expression is lost have reduced HIV acquisition risk and disease progression while individuals with the CCR5P1 haplotype have higher CCR5 expression and accelerated disease progression. These and other observations led to drugs that block CCR5, which are licensed for the treatment of HIV.
Current planned studies of genetic determinants of SARS-CoV-2 susceptibility and outcomes
(Cancer Genomics Research Laboratory; immediately share data with scientific community)

• **Italian epidemic cohort**: collaboration with NIAID, up to 2500 samples, likely to be skewed to patients with poor outcome

• **NIH Clinical Center cohort**: collaboration with NHGRI, NIAID; COVID-19 patients at Clinical Center; planning to expand to extramural centers

• **Longitudinal cancer cohort (Dr. Doroshow will discuss)**: COVID-19 infections in cancer patients, a group with increased risk of poor outcomes; will include patients with benign course and poor outcomes; detailed prospective information
Pivoting some cancer research activities at FNLCR to SARS-CoV-2 research

- Identifying genetic determinants of SARS-CoV-2 susceptibility and outcomes: Cancer Genomics Research Laboratory
- Testing and validating serologic assays for SARS-CoV-2: Serology laboratory of Vaccine, Immunity, and Cancer Program
- High throughput screening for small molecule inhibitors of SARS-CoV-2 proteins: Technology developed by RAS Initiative
HPV Serology at FNL

Ligia A. Pinto, PhD
Director, Vaccine, Immunity and Cancer Program
Vaccine, Immunity and Cancer Program: HPV Serology Efforts

Support for NCI vaccine trials and epidemiological studies
NCI Costa Rica Vaccine Trial

Collaboration with the extramural HPV vaccine community
cCRADAs
– Moffitt Cancer Center
– University of London

HPV serology standardization initiative (reference lab)
Partners: BMGF, CDC, PHE, NIBSC, KI, and WHO
Stable HPV16 serum antibodies 11 years after one dose of the bivalent HPV vaccine (post-hoc analysis)

100% of 1 dose recipients at 11 years remain seropositive and HPV16 DNA-negative
Convert part of HPV serology lab to SARS-CoV-2 serology

- A collaborative research effort with several labs: NIAID, CDC, Mt. Sinai, others

- **Shorter term goals**: 1) Characterize performance of different serologic assays, correlate with neutralization assays, understand possible cross-reacting sera from prior to epidemic; 2) correlations with serologic tests submitted to FDA

- **Longer term goals**: Understand implications of being seropositive (e.g., resistance to reinfection), duration of seropositivity

- **Cohort oriented research projects**: COVID-19 longitudinal trial of cancer patients (to be discussed by Dr. Doroshow), others
Pivoting some cancer research activities at FNLCR to SARS-CoV-2 research

• Identifying genetic determinants of SARS-CoV-2 susceptibility and outcomes: Cancer Genomics Research Laboratory

• Testing and validating serologic assays for SARS-CoV-2: Serology laboratory of Vaccine, Immunity, and Cancer Program

• High throughput screening for small molecule inhibitors of SARS-CoV-2 proteins: Technology developed by RAS Initiative
Development of RAS G12C mutant allele-specific inhibitors that attach covalently (tethered) to Cysteine-12 mutation
Evaluating several KRASG12C inhibitors in US-based clinical trials

<table>
<thead>
<tr>
<th>Agent(s)/Mechanism</th>
<th>Phase</th>
<th>Company</th>
<th>Setting</th>
<th>N of pts</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMG 510 (+/- PD1/L1)/KRASG12inhibitor</td>
<td>1/2</td>
<td>Amgen/Carmot Therapeutics</td>
<td>AMG 510 monotherapy in KRASG12C advanced solid tumors and in combination w/PD1/L1 in KRASG12C advanced NSCLC</td>
<td>158</td>
</tr>
<tr>
<td>MRTX 849/KRASG12inhibitor</td>
<td>1/2</td>
<td>Mirati</td>
<td>MRTX 849 in KRASG12C advanced solid tumors</td>
<td>200</td>
</tr>
<tr>
<td>ARS-3248 (JNJ-74699157)/KRASG12inhibitor</td>
<td>1</td>
<td>Wellspring Biosciences and Janssen</td>
<td>ARS-3248 (JNJ-74699157) in KRASG12C advanced solid tumors</td>
<td>140</td>
</tr>
<tr>
<td>LY3499446/KRASG12inhibitor +/- abemaciclib, cetuximab, erlotinib vs docetaxel (phase 2)</td>
<td>1/2</td>
<td>Eli Lilly and Company</td>
<td>Advanced solid tumors including NSCLC and CRC</td>
<td>230</td>
</tr>
</tbody>
</table>

Nagasaka et al, Cancer Treat Rev 2020
Tethering can identify fragment binding pockets adjacent to cysteines
FNL Disulfide tethering library

Assessed library of 13,000 carboxylic acid building blocks – compounds selected through computational analysis based on R-group diversity:

- k-mean clustering (Lloyd’s algorithm)
- Hierarchical clustering (Tanimoto similarity metric)
- Diversity-based selection (Soergel distance metric)

Total = 1158 unique disulfide fragments

- Good fragment-like properties (MW <300, ClogP ≤ 3, \(n(H\)-bond donors/acceptors) ≤3 etc.)
- Minimal overly complex molecules
- Exclusion of compounds with unnecessary stereochemistry (e.g. racemizable groups)
- Exclusion of PAINS / reactive groups
3CLPro and PLPro: Two SARS-Cov-2 protease targets involved in viral life cycle

- Both proteins have at least 10 exposed cysteine residues that can be targeted for covalent inhibition
- Covalent inhibitors can have better antiviral activity
- AI-methods provide rapid “leads” that can test for inhibition across both targets
Iterative design: Argonne National Laboratory (ANL), FNLCR, and University of Chicago

ANL (AI Approaches)
- Docking @ Scale across supercomputing facilities
- AI-based consensus ranking/scoring

University of Chicago
- Lead refinement / medchem / biochemical experiments
- Screening against 3CLPro and PLPro

FNLCR Tethering library

ANL (Crystallography)
- Hits that can be co-crystallized/crystal soaking
- Leads are deposited in the public domain (websites)

FNLCR Tethering library

Frederick National Laboratory for Cancer Research

sponsored by the National Cancer Institute
The overall goal of global research on SARS-CoV-2: From mountain to molehill

Biomedical research

Healthcare system capacity

Days since the first case
Discussion