

Inhibiting K-RAS in the Clinic – Are we There yet?

Alex A. Adjei

October 3, 2019 SWOG Translational Science Symposium Chicago, IL

RAS signaling is evolutionally conserved across species

Ras is the most mutated oncogene in Cancer

32% of all human cancers have Ras missense mutations

%*
3
8
21

Pancreatic	90%	KRAS
Colorectal Lung	50% 30%	KRAS KRAS
Melanoma	25%	NRAS

Ras Signaling

transcription factors

MAP kinase then dimerizes and enters the nucleus.

Mutant Ras is GAP-insensitive and persistently GTP-bound

Ras binds GTP with pM affinity: Difficult to disrupt

Anti-K-Ras strategies

Inhibitors of Ras membrane association:

the farnesyltransferase inhibitors (FTIs)

FTIs Reverse the Malignant Phenotype

Control

H-Ras Tranformed

H-Ras Transformed + FTI

FTIs Cure H-ras mutant Tumor-Bearing Mice

npg

npg © 1995 Nature Publishing Group http://www.nature.com/naturemedicine

ARTICLES

Inhibition of farnesyltransferase induces regression of mammary and salivary carcinomas in *ras* transgenic mice

Nancy E. Kohl¹, Charles A. Omer¹, Michael W. Conner², Neville J. Anthony³, Joseph P. Davide¹, S. Jane deSolms³, Elizabeth A. Giuliani³, Robert P. Gomez³, Samuel L. Graham³, Kelly Hamilton¹, Laurence K. Handt⁴, George D. Hartman³, Kenneth S. Koblan¹, Astrid M. Kral¹, Patricia J. Miller¹, Scott D. Mosser¹, Timothy J. O'Neill¹, Elaine Rands¹, Michael D. Schaber¹,

FTIs (Tipifarnib, Lonafarnib) Negative Pivotal trials

- Pancreatic Cancer
- Non-small Cell Lung Cancer
- Colorectal Cancer
- Acute Myelogenous Leukemia

Admit it you feel like doing this to someone everyday.

K-Ras and N-Ras undergo FTI-induced alternative prenylation

Efforts have focused on "indirect" inhibition of Ras Downstream Signaling

KRAS G12 mutations are the most frequent in different cancers

KRAS G12 mutation frequencies in different cancers may provide a role for mutation-specific therapies

Approach to inhibiting KRAS G12C

The KRAS Binding Problem

The KRAS G12C Opportunity

- 1. KRAS G12C has a cysteine present in its inactive form
- Switch II pocket

 Cysteine

 KRAS
 G12C
- 2. Binding to the cysteine opens an adjacent Switch II pocket

Inhibitor covalently binds to the cysteine and the induced Switch II pocket

 KRAS G12C is irreversibly locked in the inactive state

Covalent Inhibitors of KRAS G12C in the clinic

- AMG 510 (NCT03600883)
- MRTX 849 (NCT03785249)
- JNJ-74699157 (NCT04006301)

Phase 1 Study Evaluating the Safety, Tolerability, Pharmacokinetics (PK) and Efficacy of AMG 510, a Novel Small Molecule KRAS^{G12C} Inhibitor, in Advanced Solid Tumors

Marwan G Fakih, MD;1 Bert Howard O'Neil, MD;2 Timothy J Price, MBBS, FRACP;3 Gerald S Falchook, MD;⁵ Jayesh Desai, MBBS, FRACP;⁶ James Kuo, MBBS, FRACP;⁷ Ramaswamy Govindan, MD;8 Erik Rasmussen, MS;4 Phuong Khanh Morrow, MD;4 Jude Ngang, PharmD;⁴ Haby Henary, MD;⁴ David Hong, MD⁹

¹City of Hope, Duarte, CA, USA; ²Indiana University, Simon Cancer Center, Indianapolis, IN, USA; ³The Queen Elizabeth Hospital, Woodville South, AU; ⁴Amgen Inc, Thousand Oaks, CA, USA; ⁵Sarah Cannon Research Institute, Denver, CO, USA; ⁶Peter MacCallum Cancer Centre, Melbourne, AU; ⁷Scientia Clinical Research, Randwick, AU, ⁸Washington University, St Louis, MO, USA;

⁹MD Anderson Cancer Center, Houston, TX, USA

2019 **ASCO**

PRESENTED BY: Marwan G. Fakih, MD

Proportion of G12C and non G12C mutations in selected cancers

• 13% of NSCLC, 3% of CRC & appendix cancer, and 1%-3% of other solid tumors

AMG 510 is a First-in-Class KRAS^{G12C} Inhibitor

 AMG 510 specifically and irreversibly inhibits KRAS^{G12C} by permanently locking it in an inactive GDPbound state

AMG 510 First-in-Human Study Design

Primary endpoints: dose-limiting toxicities; safety

Key secondary endpoints: PK; objective response rate; duration of response; disease control rate; PFS; duration of stable disease

a30 (+7) days after end of treatment for safety follow-up; every 12 weeks for long-term follow-up. PK: pharmacokinetics; PFS: progression-free survival.

AMG 510 Pharmacokinetic Profile - 960 mg PO Dose (n=9*)

Duration of Treatment by Tumor Types and Responses (n=29)

CRC: Individual Patient Radiologic Response and Biomarkers

Demographics:

34 y.o. Female, diagnosed with metastatic colon adenocarcinoma April 2014

Treatment history:

- FOLFOX and HIPEC in Aug 2015, followed by FOLFOX until Dec 2015
- FOLFIRI with PD in Aug 2016
- HIPEC Oct 2016
- Capecitabine + bevacizumab Aug 2017
- Phase I clinical trial March-June 2018
- AMG 510 360 mg since Oct 2018

Response:

- Biochemical response (normal CEA)
- SD (-18% local read), still on treatment (22.3 weeks as of data cutoff)

Baseline Week 24 Follow-up

PRESENTED AT: 2019 ASCO ANNUAL MEETING

Slides are the property of the author permission required for reuse.

PRESENTED BY: Marwan G. Fakih, MD

CRC and Other Solid Tumors: Best Tumor Response* (n=19)

CRC Cohort : Update at ESMO

- 12 pts treated at RP2D
- 1 PR (8%)
- 10 SD
- DCR (92%)

Phase 1 Study of Safety, Tolerability, Pharmacokinetics, and Efficacy of AMG 510, a Novel KRAS^{G12C} Inhibitor, in Non-Small Cell Lung Cancer

Ramaswamy Govindan, MD;¹ Marwan G Fakih, MD;² Timothy J Price, MBBS, DHlthSci, FRACP;³ Gerald S Falchook, MD;⁴ Jayesh Desai, MBBS, FRACP;⁵ James C Kuo, MBBS, FRACP;⁶ John H Strickler, MD;⁷ John C Krauss, MD;⁸ Bob T Li, MD;⁹ Crystal S Denlinger, MD;¹⁰ Greg Durm, MD;¹¹ Jude Ngang, PharmD;¹² Haby Henary, MD;¹² Gataree Ngarmchamnanrith, MD;¹² June Kim, PhD;¹² Phuong Khanh Morrow, MD;¹² David S Hong, MD¹³

¹Alvin J Siteman Cancer Center at Washington University School of Medicine, St Louis, MO, USA; ²City of Hope, Duarte, CA, USA; ³The Queen Elizabeth Hospital, Woodville South, Australia; ⁴Sarah Cannon Research Institute at HealthONE, Denver, CO, USA; ⁵Peter MacCallum Cancer Centre, Melbourne, Australia; ⁶Scientia Clinical Research, Randwick, Australia; ⁷Duke University Medical Center, Durham, NC, USA; ⁸University of Michigan, Ann Arbor, MI, USA; ⁹Memorial Sloan Kettering Cancer Center, New York, NY, USA; ¹⁰Fox Chase Cancer Center, Philadelphia, PA, USA; ¹¹Indiana University, Simon Cancer Center, Indianapolis, IN, USA; ¹²Amgen Inc., Thousand Oaks, CA, USA; ¹³MD Anderson Cancer Center, Houston, TX, USA

Patient Disposition

Baseline Characteristics

Baseline Characteristics	N = 34
Median age (range) – years	67.5 (49.0–77.0)
Female – n (%)	18 (52.9)
ECOG performance status score – n (%)	
0	5 (14.7)
1	26 (76.5)
2	3 (8.8)
Prior lines of systemic anticancer therapy – n (%)	
1	2 (5.9)
2	3 (8.8)
> 2	29 (85.3)
No. of prior systemic anticancer therapy – median (range)	3.5 (1–8)

Patient Incidence of Adverse Events (AEs): Summary

	All AEs N = 34 n (%)	All treatment-related AEs N = 34 n (%)
Any grade Grade ≥ 2 Grade ≥ 3 Grade ≥ 4	26 (76.5) 20 (58.8) 11 (32.4) 5 (14.7)	12 (35.3) 8 (23.5) 3 (8.8) 0 (0)
Dose-limiting toxicity	0 (0)	0 (0)
Serious AEs	8 (23.5)	0 (0) _p
Fatal AEs	4 (11.8)ª	0 (0)
AEs leading to treatment discontinuation	0 (0)	0 (0)

- No dose-limiting toxicities were reported
- No treatment-related serious or fatal AEs were reported
- There were no AEs leading to treatment discontinuation

• 960 mg oral daily dose was identified as the expansion dose and recommended phase 2 dose

Patient Incidence of Treatment-Related Adverse Events (AEs)

All Treatment-Related AEs	Any Grade N = 34, n (%)	Grade 3 N = 34, n (%)
Any treatment-related AEs	12 (35.3)	3 (8.8)
Diarrhea	4 (11.8)	2 (5.9)
Nausea	2 (5.9)	0 (0)
Dry mouth	1 (2.9)	0 (0)
Vomiting	1 (2.9)	0 (0)
ALT increased	2 (5.9)	0 (0)
AST increased	2 (5.9)	0 (0)
Blood alkaline phosphate increased	1 (2.9)	0 (0)
Lymphocyte count decreased	1 (2.9)	0 (0)
White blood cell count decreased	1 (2.9)	0 (0)

Cont.	
	All Treat

All Treatment- Related AEs	Any Grade N = 34, n (%)	Grade 3 N = 34, n (%)
Decreased appetite	1 (2.9)	0 (0)
Hyperkalemia	1 (2.9)	0 (0)
Hypokalemia	1 (2.9)	0 (0)
Anemia	1 (2.9)	1 (2.9)
Leukopenia	1 (2.9)	0 (0)
Dysgeusia	1 (2.9)	0 (0)
Neuropathy peripheral	1 (2.9)	0 (0)
Proteinuria	1 (2.9)	0 (0)

- 12 of 34 patients (35.3%) reported treatment-related AEs; most were grade 1 or 2
- 3 of 34 patients (8.8%) reported two grade 3 treatment-related AEs: diarrhea and anemia
- There were no grade 4 or higher treatment-related AEs.

ALT: alanine aminotransferase; AST: aspartate aminotransferase; AE: adverse event.

NSCLC: Individual Patient Radiologic Responses

Demographics:

 ${f 61}$ y.o. Female, diagnosed with KRAS $^{{\tt G12C}}$ metastatic NSCLC August 2010

Treatment history:

- Radiation + Carboplatin/Taxol from Aug 2010 until Oct 2010
- Carboplatin/Pemetrexed from Oct 2016 until Jun 2017
- Nivolumab from Aug 2017 until Apr 2018
- AMG 510 180 mg since Sept 2018

Best Response:

 PR (-34% central read) Still on treatment (27.4 weeks as of data cutoff)

Demographics:

59 y.o. Male, with KRAS^{G12C} metastatic NSCLC, December 2013

Treatment history:

- Carboplatin/Pemetrexed Feb 2014 until Feb 2015
- Erlotinib from April 2015 until Jun 2015
- Nivolumab Aug 2015 until Aug 2017
- Dasatinib from Jul 2016 until Aug 2017
- M3541 (Targeted biologic) from Oct 2017 until Nov2017
- AMG 510 360 mg since Dec 2018

Best Response:

- PR (-67% central read) Still on treatment (14.3 weeks as of data cutoff)
- CR to the targeted lesions were reported at week 18 (post data cutoff)

PRESENTED AT: 2019 AS

2019 ASCO ANNUAL MEETING

FASCO19 lides are the property of the author, permission required for reuse. PRESENTED BY: Marwan G. Fakih, MD

- 1

Best Tumor Response and Change in Tumor Burden From Baseline

^aOne patient discontinued study due to PD prior to the 1st assessment, and the post-baseline tumor burden data are missing. ^bPR or SD at week 6. ^cPatient had complete response to the target lesions. Evaluable patients: patients who had the first 6-week scan or early PD; NSCLC: non-small cell lung cancer; PR: partial response; SD: stable disease; PD: progressive disease.

Time to Response and Duration of Treatment for All Dose Levels

Efficacy of AMG 510 Administered at 960 mg, the Recommended Phase 2 Dose

Efficacy with 960 mg	Evaluable NSCLC patients receiving 960 mg, N = 13
Best overall response Partial response – n (%) Stable disease – n (%) Progressive disease – n (%)	7 (54) 6 (46) 0 (0)
Objective response rate – %	54
Disease control rate ^a – %	100

^aPR or SD at week 6. Evaluable patients: patients who had the first 6-week scan or early progressive disease; PR: partial response; SD: stable disease.

AMG 510 Updates

- Expansion cohorts ongoing
- Combination with Trametinib
- Combination with AMG 404
- Other Combinations
- Ongoing preclinical studies aimed at inhibiting G12D tumors

Inhibiting Kras in the Clinic

We are almost there.....

adjei.alex@mayo.edu

