Biomarker studies in S1314: The CoXEN Trial

David J. McConkey, PhD, Chair Translational Medicine SWOG GU Committee

Disclosures

- Grant support: Astra-Zeneca,
 Janssen, Rainier Pharmaceuticals
- Honoraria: Janssen, Rainier, H3
 Biomedicine

NON FDA Approved use of drugs or products referenced in this presentation – None.

David J. McConkey, PhD

Background

- Cisplatin-based combination neoadjuvant chemotherapy is the standard of care in eligible patient with muscle-invasive, localized disease
 - Both Gemcitabine + Cisplatin (GC) and dose-dense
 MVAC (dd-MVAC: Methotrexate, Vinblastine, Doxorubicin + Cisplatin) are acceptable regimens
- The use of this therapy, despite category 1 support, remains suboptimal
- There are no predictive biomarkers in use for cytotoxic chemotherapy in this setting

Downstaging as a surrogate for survival

- Radical cystectomy removes primary tumor and lymph nodes (extent: S1011)
- Downstaging to <pT2 (i.e., no muscle-invasive disease) is associated with excellent outcomes
- In this setting, chemosensitivity of the primary tumor is considered a surrogate for the sensitivity of subclinical metastatic disease
- However, the correlation is not perfect (i.e., disconnect with ctDNA, Dyrskjot, JCO 2019)

Neoadjuvant chemotherapy in bladder cancer

SWOG 8710:

- Rate of pT0 was 38% with chemotherapy and 15% without
- 8 year survival
 - pT0 ~75%
 - > pT0 ~30%

N Engl J Med 2003; 349:859-866

NCI WORKSHOP

NOVEL NEOADJUVANT THERAPY FOR BLADDER CANCER

AGENDA

Monday, September 19^{TH} from 8:00 am -6:45 pm ET Tuesday, September 20^{TH} from 7:30 am -1:15 pm ET

GAITHERSBURG MARRIOTT WASHINGTONIAN CENTER
9751 WASHINGTONIAN BLVD
GAITHERSBURG, MD

ROOM: SALONS EFG (FOR MAIN SESSION)

Session 1: Candidate biomarkers (McConkey and Theodorescu)

S1314 TM was the product of the meeting.

The CoXEN algorithm

Ref: Clin Can Res 2005;11(7): 2625 Tx: Neoadjuvant MVAC (N=45) + surgery or XRT Outcome: Downstaging, Overall survival

Leading cancer research. Together.

Trial schema

Integrated translational medicine

- CoXEN (Theodorescu, Flaig): primary objective
- miRNA-based molecular subtypes (Dinney, Choi, McConkey)
- Molecular subtypes (Lerner, Choi, others)
- DDR mutations (Rosenberg, Iyer, Plimack)
- SNPs associated with drug metabolism (O'Donnell)

BISQFP funding

- RNA isolation and Affymetrix gene expression profiling (Flaig, Theodorescu)
- RNA and DNA isolation and Nanostring miRNA expression profiling (Dinney, Choi and McConkey)
- Blood germline and tumor MSK IMPACT panel exome sequencing (Rosenberg)

Tissue collection and processing

- Collected 20 unstained slides per patient
- 10x went to ALMAC for RNA isolation and Affymetrix gene expression profiling (HU133 chips)
- 5x went to MDACC for RNA and DNA extraction and miRNA profiling (NanoString)
- 5x remain in the SWOG tissue bank (Nationwide)

CONSORT Diagram

Leading cancer research. Together.

Pathologic response by treatment arm in evaluable subjects

N=167	GC (N=82)	ddMVAC (N=85)
Chemotherapy Response		
CR (pT0)	28 (35%)	27 (32%)
PR (downstaged to ≤T1)	12 (15%)	20 (24%)
CR + PR	40 (50%)	47 (56%)
Non-responders	42 (50%)	38 (44%)

Correlation of repeat samples between Batch 1 and 2

Red :Batch 2 Green: Batch 1

S1314: Primary Analysis

Coxen Score	Outcome	Arm	Number	Odds Ratio**	95% CI**	P-value**		
GC*	pT0	GC	82	2.63	(0.82, 8.36)	0.10		
GC*	<u><</u> pT1	GC	82	1.75	(0.60, 5.34)	0.30		
ddMVAC*	pT0	ddMVAC	85	1.12	(0.42,2.95)	0.82		
ddMVAC*	<u><</u> pT1	ddMVAC	85	0.92	(0.37, 2.27)	0.86		
GC*	<u><</u> pT1	Both	167	2.33	(1.11, 4.89)	0.02		
ddMVAC*	<u><</u> pT1	Both	167	0.90	(0.46, 1.75)	0.76		
Moderate Spearman correlation between GC and MVAC Coxen scores: 0.39								

^{*} favorable based on prespecified algorithm and dichotomous cut point

^{**} adjusted for two stratification factors – clinical stage at baseline (T2 vs T3, T4a), PS (0 vs 1)

TCGA final analyses: k = 5

Cell, 2017

% of MIBC	24%	8%	15%	15%	35%	3%
Class Name	Luminal Papillary (LumP)	Luminal Non- Specified (LumNS)	Luminal Unstable (LumU)	Stroma-rich	Basal/Squamous (Ba/Sq)	Neuroendocrine- like (NE-like)
				BOT	CD8+	
Differentiation		Urothelial / Luminal			Basal	Neuroendocrine
Oncogenic mechanisms	FGFR3 + PPARG + CDKN2A-	PPARG+	PPARG + E2F3 +, ERBB2 + Genomic instability Cell cycle +		EGFR +	TP53 -, RB1 -, Cell cycle +
Mutations	FGFR3 (40%), KDM6A (38%)	ELF3 (35%)	TP53 (76%), ERCC2 (22%) TMB +, APOBEC +		TP53 (61%), RB1 (25%)	TP53 (94%) RB1 (39%)*
Stromal infiltrate		Fibroblasts		Smooth muscle Fibroblasts Myofibroblasts	Fibroblasts Myofibroblasts	
Immune infiltrate				B cells	CD8T cells NK cells	
Histology	Papillary morphology (59%)	Micropapillary variant (36%)			Squamous differentiation (42%)	Neuroendocrine differentiation (72%)
Clinical	T2 stage +	Older patients+ (80+)		1 1 1 1 1	Women + T3/T4 stage+	(1270)
Median overall survival (years)	4	1.8	2.9	3.8	1.2	1

^{* 94%} of these tumors present either RB1 mutation or deletion

Relationship between subtype membership and NAC response

Molecular subtypes: prognostic for survival

Siefker-Radtke, Eur Urol 2016

Basal tumors and NAC benefit

Seiler et al, Eur Urol 2017

MD Anderson subtypes in S1314

oneNN subtype assignments

Relationship with downstaging

Leading cancer research. Together.

MVAC-sensitive basal tumors were infiltrated with lymphocytes

Future plans

- Train a CoXEN classifier on cisplatin alone, and reapply to the S1314 dataset
- Apply the other molecular subtyping algorithms to the Affy dataset and correlate with downstaging
- Use the leftover RNA at MDACC to perform RNAseq (Theodorescu)
- Correlate molecular subtype membership with survival (18-24 months from now)
- ctDNA?

RESEARCH ARTICLE

Somatic *ERCC2* Mutations Correlate with Cisplatin Sensitivity in Muscle-Invasive Urothelial Carcinoma №

Eliezer M. Van Allen^{1,2}, Kent W. Mouw^{3,4}, Philip Kim⁵, Gopa Iyer^{6,7}, Nikhil Wagle^{1,2}, Hikmat Al-Ahmadie^{6,8}, Cong Zhu², Irina Ostrovnaya³, Gregory V. Kryukov², Kevin W. O'Connor³, John Sfakianos⁵, Ilana Garcia-Grossman⁷, Jaegil Kim², Elizabeth A. Guancial^{1,0}, Richard Bambury⁷, Samira Bahl², Namrata Gupta², Deborah Farlow², Angela Qu¹, Sabina Signoretti^{1,1}, Justine A. Barletta^{1,1}, Victor Reuter^{6,8}, Jesse Boehm², Michael Lawrence², Gad Getz^{2,1,2}, Philip Kantoff¹, Bernard H. Bochner^{5,6}, Toni K. Choueiri¹, Dean F. Bajorin^{6,7}, David B. Solit^{6,7,1,3}, Stacey Gabriel¹, Alan D'Andrea^{3,4}, Levi A. Garraway^{1,2}, and Jonathan E. Rosenberg^{6,7}

EUROPEAN UROLOGY 68 (2015) 959-967

available at www.sciencedirect.com
journal homepage: www.europeanurology.com

Platinum Priority – Bladder Cancer Editorial by Cyrill A. Rentsch, Frank Stenner, Christian Ruiz and Lukas Bubendorf on pp. 968–969 of this issue

Defects in DNA Repair Genes Predict Response to Neoadjuvant Cisplatin-based Chemotherapy in Muscle-invasive Bladder Cancer

Elizabeth R. Plimack ^{a,*}, Roland L. Dunbrack ^a, Timothy A. Brennan ^b, Mark D. Andrake ^a, Yan Zhou ^a, Ilya G. Serebriiskii ^a, Michael Slifker ^a, Katherine Alpaugh ^a, Essel Dulaimi ^a, Norma Palma ^b, Jean Hoffman-Censits ^c, Marijo Bilusic ^a, Yu-Ning Wong ^a, Alexander Kutikov ^a, Rosalia Viterbo ^a, Richard E. Greenberg ^a, David Y.T. Chen ^a, Costas D. Lallas ^c, Edouard J. Trabulsi ^c, Roman Yelensky ^b, David J. McConkey ^d, Vincent A. Miller ^b, Erica A. Golemis ^a, Eric A. Ross ^a

* Fox Chase Cancer Center, Philadelphia, PA, USA; * Foundation Medicine Inc., Cambridge, MA, USA; * Thomas Jefferson University Haspital, Philadelphia, PA, USA; * MD Anderson Cancer Center, Houston, TX, USA

Figure. Overall Survival With and Without Somatic ERCC2 Mutations

A, Overall survival with and without somatic *ERCC2* mutations in the current (Fox Chase Cancer Center [FCCC]) validation cohort. Kaplan-Meier analysis of overall survival by the presence or absence of a somatic *ERCC2* mutation. There is a statistically significant difference in survival (log-rank test; *P* = .03).

B, Overall survival with and without somatic *ERCC2* mutations in a previously

reported¹ (Dana Farber Cancer Institute and Memorial Sloan Kettering Cancer Center [DFCI/MSKCC] combined) discovery cohort. Kaplan-Meier analysis of overall survival by the presence or absence of a somatic *ERCC2* mutation. There is a statistically significant difference in survival, log-rank test (*P* = .049).

David Liu, MD, MPH, MS Elizabeth R. Plimack, MD, MS Jean Hoffman-Censits, MD Levi A. Garraway, MD, PhD Joaquim Bellmunt, MD, PhD Eliezer Van Allen, MD Jonathan E. Rosenberg, MD

JAMA Oncology August 2016 Volume 2, Number 8

Ongoing studies

- Amendment to allow panel DNA exome sequencing (MSK IMPACT and Caris) was approved
- BISQFP funding is in place for MSK IMPACT
- DNA from MDACC will be sent to MSK
- Germline DNA will be isolated at MSKCC and shared with Peter O'Donnell
- Correlate ctDNA and CTCs with path responses and outcomes (Goldkorn, R01)

For the future

- Public Affy and Illumina RNAseq datasets
- Residual ALMAC RNA
- 5x unstained slides
- Urine
- Post-treatment tumors

The SWOG S1314 team

Tom Flaig (Colorado)

Cathy Tangen (FHCRC)

Melissa Plets (FHCRC)

Dan Theodorescu (Cedars-Sinai)

Dan Gustafson (Colorado State)

Scott Lucia (Colorado)

Seth Lerner (Baylor)

Amir Goldkorn (USC)

Colin Dinney (MDACC)

Woonyoung Choi (JHMI)

I-Ling Lee (MDACC)

Megan Fong (JHMI)

Sia Daneshmand (USC)

Aijai Alva (Michigan)

Matt Milowski (UNC)

Gary MacVicar (Illinois CancerCare)

Bruno Bastos (Baptist Health)

Ian Thompson (San Antonio)

