S 1933

A Pilot Study of Hypofractionated Radiotherapy Followed by Atezolizumab Consolidation in Stage II or III NSCLC Patients with Borderline Performance Status

Background

- Lack of evidence-based data to guide treatment decision in patients with stage III NSCLC with PS 2 and stage II patients who are not candidates for surgical resection.
- Basic science and clinical data support the synergistic activity of radiotherapy and immune checkpoint inhibitors.
- Hypofractionated radiotherapy was better tolerated than standard fractionation in this patient population with similar outcomes based on UTSW trial by lyengar et al.
- Immune checkpoint inhibitors were better tolerated than chemotherapy with less TRAEs in clinical trials.

Background

TABLE 2. Patient-Rated and Provider-Rated ECOG PS, Lung Cancer Patients (n = 503)^a

Patient-Reported ECOG PS	Provider-Reported ECOG PS							
	0	1	2	3	4	Т	otal	
	59	38	6	4	0	107	(22.0)	
1	43	77	21	2	0	146	(30.0)	
2	16	69	53	20	2	163	(33.5)	
3	2	19	25	22	1	70	(14.4)	
4	0	3	1	7	3	15	(3.1)	
Total	121	207	106	55	6			
	(24.4)	(41.8)	(21.4)	(11.1)	(1.2)			

All values inside parentheses indicate percentages.

Lilenbaum et al, J Thorac Oncol 2008;3:125

^a Eight patients were missing patient-rated PS, two patients were missing provider rated PS. ECOG PS, Eastern Cooperative Oncology Group Performance Status.

Hypothesis

▶ Hypofractionated radiotherapy followed by atezolizumab consolidation in patients with stage III NSCLC with PS 2 or stage II patients who are not candidates for surgical resection will be well tolerated and will lead to better outcomes compared to historic controls in this patient population.

Objectives

Primary Objective:

To evaluate the rate of Grade 3-5 Treatment-Related Adverse Events (TRAEs) in patients who are not candidates for surgery or concurrent chemoradiation and who have either performance status 0-2 and Stage II or performance status 2 and Stage III non-small cell lung cancer (NSCLC), treated with hypofractionated thoracic radiotherapy followed by atezolizumab.

- Secondary Objectives:
- 1. To evaluate response rate.
- To evaluate PFS.
- To evaluate OS.
- 4. To evaluate TRAEs (all grades).

Key Inclusion and Exclusion Criteria

Key Inclusion Criteria:

<u>Step 1: Before radiotherapy:</u> Patients with stage III NSCLC with PS 2 <u>or</u> stage II NSCLC with PS 0-2 and are not surgical candidates.

<u>Step 2: After radiotherapy & before atezolizumab:</u> Patients must have received at least 45 Gy of radiation with no disease progression.

Key Exclusion Criteria:

- 1. Patients with active autoimmune disease.
- 2. Patients with a history of interstitial lung disease or <u>></u> G3 pneumonitis.

Statistical Consideration

Sample size needed for this study is 40 patients in the safety analysis population.

▶ Observation of 8 or fewer patients with toxicity (20%) would be considered evidence to rule out 34% or greater toxicity rate calculated from historic controls.

Estimating that 10% of patients registered to Step 1 will not register to Step 2 and 5% registered to Step 2 will either not meet eligibility criteria or receive at least one dose of atezolizumab, the total target accrual is 47 patients.

S1933

A Pilot Study of Hypofractionated Radiotherapy Followed by Atezolizumab Consolidation in Stage II or III NSCLC Patients with Borderline Performance Status

Timur Mitin, M.D., Ph.D.
S1933 Co-Chair, Radiation Oncology
Knight Cancer Institute
Oregon Health and Science University
Department of Radiation Medicine

Patterns of care for non-operable T1-4 N+ M0 NSCLC in the US: NCDB Analysis 2004-2013

- N+ M0 NSCLC in NCDB, 2004-2013
 - 74,867 patients
 - Chemoradiation therapy (10,915, 15%)
 - Chemotherapy alone (34,978, 47%)
 - Radiation Therapy alone (2,396, 3%)
 - No aggressive treatment (26,578, 36%)

Study	1 year	2 years	3 years	4 years	5 years	Median
Chemotherapy	57%	31%	20%	15%	12%	14.5 months
(CTmono)						
Radiation (RTmono)	51%	25%	15%	11%	8%	12.3 months
Roswit 1968	18%					7.6 months
Perez 1980		<25%				
Sause 1995						11.4 months
Dillman 1996	40%	13%	10%	7%	6%	
Sigel 2013						9 months

UTSW: A Phase III Randomized Study of Image Guided Conventional (60 Gy/30 fx) Versus Accelerated, Hypofractionated (60 Gy/15 fx) Radiation for Poor Performance Status Stage II and III NSCLC Patients

• 60 patients:

 Stage II NSCLC not candidates for surgery or Stage III NSCLC not candidates for chemoradiation due to diminished PS (Zubrod PS 2 or greater)

Outcomes:

- median OS for the evaluable 48 patients was 11.5 months, with no statistical difference between conventional vs hypofractionated radiation treatment arms
- PFS was 14 months with no statistical difference between treatment arms
- No grade 4 toxicities were attributed to radiation
- Grade 3 toxicities: 10 (36%) in 60/30 arm and 6 (19%) in 60/15 arm

Radiation Therapy Details

- RT must begin within 28 days after registration.
- Simulation can take place before registration
- Treatment must begin within 3 weeks after simulation
- Digital submission of treatment plans: 4DCT, planning CT, RT plan, RT dose and structure set.
- IROC will perform a rapid review of each treatment plan. Institutions should allow 5 business days for each case to be received, processed, and reviewed. If the plan must be resubmitted it will be given a rapid review (within 3 business days).
- Allowed modes: photons (6-10 MV) with IMRT/VMAT
- · 4-D treatment planning is required
- One of the motion control techniques is mandatory if the tumor motion is > 1 cm during 4D CT sim:
 - Abdominal compression
 - Gating
 - Tumor tracking
 - · Active breath-holding
- Daily CBCTs

Target Volumes

- OARs=spinal cord + 10 mm; esophagus + 5 mm, trachea + 3 mm, heart + 3 mm, brachial plexus + 5 mm, great vessels + 3 mm, rib + 3 mm, skin + 3 mm
- GTV = primary tumor and clinically and/or pathologically involved lymph nodes
- CTV = GTV + 5-10 mm with trimming expansions into normal structures
- ITV = CTV + motion quantified from 4D-scan (using MIP)
- PTV = ITV + 5 mm
 - PTV60: PTV as created MINUS organs at risk with expansion margins
 - PTV45: PTV as created without subtraction of OARs

Treatment Planning Protocol Requirements

Target/OAR	rget/OAR Metric P		Variation Acceptable	Deviation Unacceptable	
	D95%[%]	≥100% of protocol dose	≥97% of protocol dose	<97% of protocol dose	
PTV60	D99%[%]	≥90% of protocol dose	≥87% of protocol dose	<87% of protocol dose	
	D2cc[%]	≤110% of protocol dose	>110% of protocol dose	>115% of protocol dose	
PTV45	D95%[%]	≥100% of protocol dose	≥97% of protocol dose	<97% of protocol dose	
11043	D99%[%]	≥90% of protocol dose	≥87% of protocol dose	<87% of protocol dose	
SpinalCord	D5cc[Gy]	<39 Gy		>39 Gy	
	D0.03cc[Gy]*	<42.3 Gy		>42.3 Gy	
BrachialPlexus	D3cc[Gy]	<44.5 Gy	<49.0 Gy	>49.0 Gy	
	D0.03cc[Gy]*	<50.6 Gy	<55.7 Gy	>55.7 Gy	
	D1500cc[Gy]	<15.5 Gy	<u><</u> 17.1 Gy	>17.1 Gy	
Lungs (Right and Left		<16.3 Gy	<u><</u> 17.9 Gy	>17.9 Gy	
minus GTV)	Mean Dose	<18 Gy	<19.8 Gy	>19.8 Gy	
	V18 Gy	<37%	<u><</u> 40.7%	>40.7%	
Heart	D15cc[Gy]	<39.5 Gy	<u><</u> 43.5 Gy	>43.5 Gy	
rieart	D0.03cc[Gy]*	<60.0 Gy	<u><</u> 66.0 Gy	>66.0 Gy	
Esophagus	D15cc[Gy]	<51.3 Gy	<56.4 Gy	>56.4 Gy	
	D0.03cc[Gy]*	<55.3 Gy	<u><</u> 60.8 Gy	>60.8 Gy	
Great Vessels	D15cc[Gy]	<48.9 Gy	<u><</u> 53.8 Gy	>53.8 Gy	
	D0.03cc[Gy]*	<60.0 Gy	<u><</u> 66.0 Gy	>66.0 Gy	
Trachea	D15cc[Gy]	<39.5 Gy	<u><</u> 43.5 Gy	>43.5 Gy	
	D0.03cc[Gy]*	<60.0 Gy	<u><</u> 66.0 Gy	>66.0 Gy	
Rib	D15cc[Gy]	<48.9 Gy	<u><</u> 53.8 Gy	>53.8 Gy	
	D0.03cc[Gy]*	<60.0 Gy	<u><</u> 66.0 Gy	>66.0 Gy	
Skin	D15cc[Gy]	<49 Gy	≤53.9 Gy	>53.9 Gy	
JKIII -	D0.03cc[Gy]*	<55.4 Gy	<u><</u> 60.9 Gy	>60.9 Gy	

Questions:

- S1933 Study Principal Investigator: Raid Aljumaily, MD
 - Raid-Aljumaily@ouhsc.edu
- S1933 Radiation Oncology Co-Chair: Timur Mitin, MD PhD
 - mitin@ohsu.edu